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Introduction

m We study (from the algorithmic point of view) a connectivity
related parameter, namely cyclability [V. Chvatal, 1973].
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Introduction

m We study (from the algorithmic point of view) a connectivity
related parameter, namely cyclability [V. Chvatal, 1973].

m Can be thought as of a quantitive measure of Hamiltonicity
(or a way to unify connectivity and Hamiltonicity):

A graph G'is k -cyclable if every k vertices of V() lie in a
common cycle. The cyclability of G is the maximum integer £ for
which G is k -cyclable.
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Introduction

= Natural question: Is there an efficient (polynomial?)
algorithm computing the cyclability of a graph?
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cubic planar graphs).
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Introduction

= Natural question: Is there an efficient (polynomial?)
algorithm computing the cyclability of a graph?

m NO, because HAMILTONIAN CYCLE is NP-hard (even for
cubic planar graphs).

m From the parameterized complexity point of view?

Spyridon Maniatis

The Parameterized Complexity of Graph Cyclability



The Parameterized Problem

p-CYCLABILITY.

Input: A graph G and a positive integer £ .
Parameter: f.

Question: Is G & -cyclable?

We actually consider, for technical reasons, the more general,
annotated version of the problem:
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The Annotated Version

p-ANNOTATED CYCLABILITY.

Input: A graph (, a set R C V(() and a positive integer £ .
Parameter: #.

Question: s it true that for every S C R with |S| < k, there exists
a cycle of (G that meets all the vertices of S?
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The Annotated Version

p-ANNOTATED CYCLABILITY.

Input: A graph (, a set R C V(() and a positive integer £ .
Parameter: #.

Question: s it true that for every S C R with |S| < k, there exists
a cycle of (G that meets all the vertices of S?

Of course, when R = V(G) we have an instance of the initial
problem.
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Our results

We study the parameterized complexity of CYCLABILITY. Our
results are:
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Our results

We study the parameterized complexity of CYCLABILITY. Our
results are:

CYCLABILITY is co-W([1]-hard (even for split-graphs), when
parameterized by & .
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Our results

We study the parameterized complexity of CYCLABILITY. Our
results are:

CYCLABILITY is co-W([1]-hard (even for split-graphs), when
parameterized by & .

The problem is in FPT when restricted to the class of planar
graphs.
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Our results

We study the parameterized complexity of CYCLABILITY. Our
results are:

CYCLABILITY is co-W([1]-hard (even for split-graphs), when
parameterized by & .

The problem is in FPT when restricted to the class of planar
graphs.

No polynomial kernel unless NP C co-NP /poly, when
restricted to cubic planar graphs.
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Theorem 1
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Theorem 1

The p-CYCLABILITY problem is co-W[1]-hard. This also holds if
the inputs are restricted to be split graphs.
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Theorem 1

The p-CYCLABILITY problem is co-W[1]-hard. This also holds if
the inputs are restricted to be split graphs.

Reduction of the k£ -CLIQUE problem to:

p-CYCLABILITY COMPLEMENT.

Input: A split graph G and a positive integer £ .

Parameter: £.

Question: Is there an S C V((G), |S] < k s.t. there is no cycle of
G that contains all vertices of S?
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Theorem 2

The p-CYCLABILITY problem, when parameterized by % , is in
FPT when its inputs are restricted to be planar graphs. Moreover,

22 O(k12 log k)

the corresponding FPT-algorithm runs in - n? steps.
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Irrelevant vertex technique

m We refer to p-ANNOTATED CYCLABILITY, restricted to
planar graphs, as problem II.

m Main idea of our algorithm: Application of the irrelevant
vertex technique (introduced by Robertson, Seymour, GM

XXII, 2012).
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Irrelevant vertex technique

m We refer to p-ANNOTATED CYCLABILITY, restricted to
planar graphs, as problem II.

m Main idea of our algorithm: Application of the irrelevant
vertex technique (introduced by Robertson, Seymour, GM

XXII, 2012).

For our purposes, we actually consider two kinds of irrelevant
vertex.
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Irrelevant vertices
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Irrelevant vertices

Problem-irrelevant vertex

Let (G, R, k) be an instance for II. Then vertex v € V() is called
problem-irrelevant for II, if (G, R, k) e 1 < (G\ v, R, k) € II .
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Irrelevant vertices

Problem-irrelevant vertex

Let (G, R, k) be an instance for II. Then vertex v € V() is called
problem-irrelevant for II, if (G, R, k) e 1 < (G\ v, R, k) € II .

Color-irrelevant vertex

Let (G, R, k) be an instance for II. Then vertex v € R is called
color-irrelevant for IL, if (G, R, k) € Il & (G, R\ v, k) € II.
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Problem-irrelevant vertices

S
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Problem-irrelevant vertices

S
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Problem-irrelevant vertices

S
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The Algorithm (First step)

m Check if tw( () is upper bounded by an (appropriate) function
of k. If YES, solve using dynamic programming.
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The Algorithm (First step)

m Check if tw( () is upper bounded by an (appropriate) function
of k. If YES, solve using dynamic programming.

m Else, we show that there exists a cycle of the plane embedding
that contains a “large” subdivided wall H as a subgraph and
the part of G that is surrounded by the perimeter of H has
bounded treewidth.
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The Algorithm (First step)

m Check if tw( () is upper bounded by an (appropriate) function
of k. If YES, solve using dynamic programming.

m Else, we show that there exists a cycle of the plane embedding
that contains a “large” subdivided wall H as a subgraph and
the part of G that is surrounded by the perimeter of H has
bounded treewidth.

m Find in H a sequence C of “many” concentric cycles that are
all traversed by “many” disjoint paths of H. We call such a
structure a railed annulus.
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The Algorithm (Second step)

m Check whether in the railed annulus there exists a “large”

(“bidimensional”) part (function of 4?) not containing any
colored vertices.
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The Algorithm (Second step)

m Check whether in the railed annulus there exists a “large”

(“bidimensional”) part (function of 4?) not containing any
colored vertices.

m If YES, pick a problem-irrelevant vertex (we prove that it
exists) and produce a smaller equivalent instance.
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Big uncolored part

a1

—
X
| X

%
.

[
|
[
1]
[
1/

|

__\

[\

irrelevant

7
\
\

AN\

™ N
é%\

AN
N
\ N\

Spyridon Maniatis

The Parameterized Complexity of Graph Cyclability



The Algorithm (Third step)

m Else, we know that the annotated vertices are “uniformly”
distributed in the railed annulus.

m There exists an annotated vertex w € R in the “centre” of the
annulus.
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The Algorithm (Third step)

m Else, we know that the annotated vertices are “uniformly”
distributed in the railed annulus.

m There exists an annotated vertex w € R in the “centre” of the
annulus.

m We set up a sequence of instances of II “around” w, each
corresponding to the graph “cropped” by the interior of some
cycles of C.

m We show that in each of them there exists a “sufficiently
large” (function of k) railed annulus.
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Sequence of instances
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Sequence of instances

Spyridon Maniatis

~—

|
=

The Parameterized Complexity of Graph Cyclability




Sequence of instances
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Sequence of instances
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Sequence of instances

Spyridon Maniatis

The Parameterized Complexity of Graph Cyclability




The Algorithm (Fourth step)

m Obtain an answer for every instance, produced in the second
step, by a sequence of dynamic programming calls.
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The Algorithm (Fourth step)

m Obtain an answer for every instance, produced in the second
step, by a sequence of dynamic programming calls.

m If there exists a NO-instance report that the initial instance is
a NO-instance and stop.
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The Algorithm (Fourth step)

m Obtain an answer for every instance, produced in the second
step, by a sequence of dynamic programming calls.

m If there exists a NO-instance report that the initial instance is
a NO-instance and stop.

m Otherwise we prove that the annotated “central” vertex that
we fixed earlier is color irrelevant.
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Color-irrelevant vertex

m (G,R k) €ll= (G,R\ w,k) €11 : Trivial.
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Color-irrelevant vertex

m (G,R k) €ll= (G,R\ w,k) €11 : Trivial.

m (G, R\wk) ell= (G R k)cIl?
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Color-irrelevant vertex

Spyridon Maniatis

The Parameterized Complexity of Graph Cyclability



Color-irrelevant vertex
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Color-irrelevant vertex
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Color-irrelevant vertex
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Color-irrelevant vertex
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To sum up

After linear number of executions of the procedure:

m Input rejected or

m Treewidth is small — Dynamic programming

Something of the above will occur after O(n) steps because at
each iteration we reject the input, we “lose” a vertex or we uncolor
a vertex.
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Irrelevant vertices for the PDPP ]
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Main combinatorial statement

The following theorem enables us to find problem-irrelevant
vertices:
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Main combinatorial statement

The following theorem enables us to find problem-irrelevant
vertices:

Let G be a graph embedded on the sphere Sy, that is the union of
r = 2 concentric cycles C = {Cy, ..., C;} and one more cycle C of
G. Assume that C'is tight in G, TN V(C,) = () and the cyclic
linkage £ = (C, T) is strongly vital in G. Then r<16 -|7] — 1.
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Main combinatorial statement

The following theorem enables us to find problem-irrelevant
vertices:

Let G be a graph embedded on the sphere Sy, that is the union of
r = 2 concentric cycles C = {Cy, ..., C;} and one more cycle C of
G. Assume that C'is tight in G, TN V(C,) = () and the cyclic
linkage £ = (C, T) is strongly vital in G. Then r<16 -|7] — 1.

Intuition: If there exists a cycle that meets S C R, then there also
exists one that meets .S and does not “go deep” in a bidimensional
graph that does not contain any vertices of S.
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Dynamic Programming

Some more about the DP for CYCLABILITY:
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Dynamic Programming

Some more about the DP for CYCLABILITY:
= Non-trivial DP algorithm (22"™"*™).

m Causes the double exponential dependance on /2 log k.
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Dynamic Programming

Some more about the DP for CYCLABILITY:

= Non-trivial DP algorithm (22"™"*™).

m Causes the double exponential dependance on /2 log k.

m DP improvement — Overall improvement of the algorithm.
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Kernelization lower bound

Our results suggest that CYCLABILITY, parameterized by £, is
unlikely to admit a polynomial kernel, when restricted to planar
graphs:
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Kernelization lower bound

Our results suggest that CYCLABILITY, parameterized by £, is
unlikely to admit a polynomial kernel, when restricted to planar
graphs:

CYCLABILITY, parameterized by £, has no polynomial kernel
unless NP C co-NP /poly, when restricted to cubic planar graphs.
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Kernelization lower bound

Let L C X* x N be a parameterized problem.

Kernelization for L

A kernelization for problem L is an algorithm that takes as an
instance (, k) of L and maps it, in polynomial time, to an instance

(o, K) such that
(z,k) € Liff (Z,K) €L
12| < f(R)
K] < g(k)
where fand g are computable functions. Function fis the size of

the kernel and a kernel is polynomial if the corresponding function
fis polynomial.
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Kernel

poly (|G|, k)

IG'] < f(k)
K <g(k)
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Kernelization lower bound

The proof uses the cross-composition technique (introduced by
Bodlaender, Jansen and Kratsch):

AND-cross-composition

An AND-cross-composition of L C ¥* into @ € ¥* x N (w.r.t. a
polynomial equivalence relation R), is an algorithm that, given ¢
instances z1,..., s € X* of L belonging to the same equivalence

class of R, takes polynomial time in > %, |#;| and outputs an
instance (y, k) € ¥* x N such that:
m the parameter value k is polynomially bounded in
max{|zi|,..., |z} + logt
m (y, k) is a YEs-instance for @ iff each instance z; is a
YES-instance for L for i € {1,...,t}

We say that L AND-cross-composes into () if a cross-composition
algorithm exists for a suitable relation R.
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AND-cross-composition

k < poly(maz{|zil,...|x:|} + logt)
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Kernelization lower bound

Assume that an NP-hard language L AND-cross-composes to a
parameterized language (). Then @) does not admit a polynomial
kernel, unless NP C co-NP /poly.
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Kernelization lower bound

Assume that an NP-hard language L AND-cross-composes to a
parameterized language (). Then @) does not admit a polynomial
kernel, unless NP C co-NP /poly.

HAMILTONICITY WITH A GIVEN EDGE

Input: A graph G and e € E(G).
Question: Does G have a hamiltonian cycle C's.t. e € E(C)?

s HaMmirroniciTy wiTH A GIVEN EDGE is NP-complete for
cubic planar graphs.

m HAMILTONICITY WITH A GIVEN EDGE AND-cross-composes
into p-CYCLABILITY.
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Further research

Improve (if possible) the DP algorithm for CYCLABILITY.
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Further research

Improve (if possible) the DP algorithm for CYCLABILITY.

Prove completeness of CYCLABILITY for some level of the
polynomial hierrarchy.
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Further research

Improve (if possible) the DP algorithm for CYCLABILITY.

Prove completeness of CYCLABILITY for some level of the
polynomial hierrarchy.

Prove completeness of p-CYCLABILITY for some level of the
W-hierrarchy.
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Further research

Improve (if possible) the DP algorithm for CYCLABILITY.

Prove completeness of CYCLABILITY for some level of the
polynomial hierrarchy.

Prove completeness of p-CYCLABILITY for some level of the
W-hierrarchy.

Apply the irrelevant vertex technique to more
(connectivity-related) problems.
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Thank you
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